NEGFOWOrk: pros and cons of the solution of the BKE based on the GKBA

Andrea Marini

Solving the Two-time Kadanoff-Baym Equations. Status and Open Problems Physics Department, March 12, 2019

Ultrafast Science Laboratory of the Material Science Institute National Research Council (Monterotondo Stazione, Italy)

outline

The Users
Perspective

$$
\begin{aligned}
& \text { Open issues } \\
& (=\text { ons })
\end{aligned}
$$
 > Ab-Initio NEGF (ANEGF) at work. Pros.
 \section*{Ab-Initio NEGF
 \section*{Ab-Initio NEGF (AINEGF) a \dagger (AINEGF) a \dagger work. Pros.} work. Pros.}

Physics

Light sources

Yambo

EIS-YAMBO round table 24-25 January 2017
AREA Science Park, 34149 Basovizza, Trieste

From an informal survey it turned out that three Fermi beamlines (EIS-TIMEX, EIS-TIME, Magnedyn) lack of even basic numerical tools to interpret and predict the Experimental data.

$$
\begin{aligned}
& 1+1= \\
& 2+2=
\end{aligned}
$$

wand the theory?!?

FIG. 11. Lowest-order approximation for the bosonic mass operators $\left.\Pi_{\mu, v}\left(z_{1}, z_{2}\right)\right|_{0}$.

The "Gap" (I)

?!?!?!?!

"Hi Andrea, we measured a long living coherent oscillation of the transient reflectivity in correspondance of the trion bleaching, followed by a non-radiative recombination.
Can you calculate it?"

Installation
Lithography \&
Patterning

nstallation 2
Growth \& Synthesis

Installation 3
Theory \& Simulation

astalation 4, 5, 6
Characterisation

Anomalous ultra-fast carriers and gap dynamics of Black Phosphorus

Ultrafast electronic dynamics across the FeRh magnetic phase transition

The Users
 Perspective

In the heaven of a theoretical physicist there are only diagrams...

Andrea Marini - CNR, Italy Andrea Ferretti - CNR, Italy Conor Hogan - CNR, Italy Daniele Varsano - CNR, Italy Davide Sangalli - CNR, Italy (1) Maurizia Palummo - Roma2, Italy Margherita Marsili- CNR, Italy Myrta Grüning - QUB, UK Pedro Melo - UC, Portugal

Advanced computing of excited state properties in solids and nanostructures with Yambo

24th - 28th April 2017
CECAM-HQ-EPFL, Lausanne, Switzerland

MATERIALS DESIGN AT THE EXASCALE

European center of excellence - a H 2020 e-infrastructure

THE CENTER
a centre of excellence aimed to disenthrall the EU leadership in materials modelling, simulations, discovery and design

THE CHALLENGE
what if material simulations were $1000 x$ faster and more workable? driving the exascale transition

THE CREW

5 research teams, 5 supercomputing centres, 1 educational institute, 2 business partners TRANSITION

Get free access to the widest range of tools for research at the nanoscale.
an advanced distribuited infrastructure to perform growth, nano-lithography, nano-characterization, theory and simulation and fine-analysis with synchrotron, FEL and neutron radiation sources.

European Theoretical Spectroscopy Facility

hittp:/ /wwwoetsfoeu/

- DRIVING
 THE EXASCALE TRANSITION

Designing materials with
High Performance Computing

LTMPI
 $+$
 OpenMP
 $+$

M

New materials search à paradigm shiffe

The Users
Perspective

The Equilibrium Hedin "Pentagons"
P. Melo, AM, PRB 93, 155102 (2016)

$$
H(t)=h_{0}+H_{e-\gamma}(t)+H_{e-e}+H_{e-n}
$$

Quantized Electrons, PHOTONS \& PHONONS

$$
\begin{gathered}
\hat{H}_{\text {ext }}(t)=\int \mathrm{d}^{3} r \hat{\phi}(\mathbf{r}, t) \rho_{\text {ext }}(\mathbf{r}, t)-\int \mathrm{d}^{3} r \hat{\mathbf{A}}(\mathbf{r}) \cdot \mathbf{J}_{\mathrm{ext}}(\mathbf{r}, t)-\int \mathrm{d}^{3} R \hat{V}_{n}(\mathbf{R}) n^{\prime}(\mathbf{R}, t) \\
G(1,2)=G_{0}(1,2)+G_{0}(1,3) \Sigma(3,4) G(4,2)
\end{gathered}
$$

$$
\Sigma(\underline{1}, \underline{2})=\left.\mathrm{i}\left[G(\underline{1}, \underline{3}) \gamma(\underline{3}, \underline{2}, \underline{4}) W\left(\underline{4}, \underline{1}^{+}\right)+\sum_{i, k=1}^{3} \Pi_{i}\left(\underline{1}, \underline{1}^{\prime}\right) G(\underline{1}, \underline{3}) \Gamma_{k}(\underline{3}, \underline{2}, \underline{4}) d_{k, i}\left(\underline{4}, \underline{1}^{\prime}\right)\right]\right|_{\underline{1}^{\prime}=\underline{1}}
$$

The Equilibrium Hedin "Pentagons"

$E Q \rightarrow N E Q(B K E)$

$$
-\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} z^{\prime}} \boldsymbol{G}\left(z, z^{\prime}\right)=\mathbf{1} \delta\left(z, z^{\prime}\right)+\boldsymbol{G}\left(z, z^{\prime}\right) \boldsymbol{h}\left(z^{\prime}\right)+\int_{\gamma} \mathrm{d} \bar{z} \boldsymbol{G}(z, \bar{z}) \boldsymbol{\Sigma}\left(\bar{z}, z^{\prime}\right)
$$

Definition	$c\left(z, z^{\prime}\right)=\int_{\gamma} \mathrm{d} \bar{z} a(z, \bar{z}) b\left(\bar{z}, z^{\prime}\right)$	$c\left(z, z^{\prime}\right)=a\left(z, z^{\prime}\right) b\left(z^{\prime}, z\right)$
$k^{>}\left(t, t^{\prime}\right)=k\left(t_{+}, t_{-}^{\prime}\right)$	$c^{>}=a^{>} \cdot b^{\mathrm{A}}+a^{\mathrm{R}} \cdot b^{>}+a^{\rceil} \star b^{\Gamma}$	$c^{>}=a^{>} b^{<}$
$k^{<}\left(t, t^{\prime}\right)=k\left(t_{-}, t_{+}^{\prime}\right)$	$c^{<}=a^{<} \cdot b^{\mathrm{A}}+a^{\mathrm{R}} \cdot b^{<}+a^{\top} \star b^{\Gamma}$	$c^{<}=a^{<} b^{>}$
$\begin{aligned} & k^{\mathrm{R}}\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right) k^{\delta}(t) \\ & \quad+\theta\left(t-t^{\prime}\right)\left[k^{>}\left(t, t^{\prime}\right)-k^{<}\left(t, t^{\prime}\right)\right] \end{aligned}$	$c^{\mathrm{R}}=a^{\mathrm{R}} \cdot b^{\mathrm{R}}$	$c^{\mathrm{R}}=\left\{\begin{array}{l} a^{\mathrm{R}} b^{<}+a^{<} b^{\mathrm{A}} \\ a^{\mathrm{R}} b^{>}+a^{>} b^{\mathrm{A}} \end{array}\right.$
$\begin{aligned} & k^{\mathrm{A}}\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right) k^{\delta}(t) \\ & \quad-\theta\left(t^{\prime}-t\right)\left[k^{>}\left(t, t^{\prime}\right)-k^{<}\left(t, t^{\prime}\right)\right] \end{aligned}$	$c^{\mathrm{A}}=a^{\mathrm{A}} \cdot b^{\mathrm{A}}$	$c^{\mathrm{A}}=\left\{\begin{array}{l} a^{\mathrm{A}} b^{<}+a^{<} b^{\mathrm{R}} \\ a^{\mathrm{A}} b^{>}+a^{>} b^{\mathrm{R}} \end{array}\right.$
$k^{\top}(t, \tau)=k\left(t_{ \pm}, \tau\right)$	$c^{\rceil}=a^{\mathrm{R}} \cdot b^{\rceil}+a^{\rceil} \star b^{\mathrm{M}}$	$c^{\top}=a^{\rceil} b^{\Gamma}$
$k^{\Gamma}(\tau, t)=k\left(\tau, t_{ \pm}\right)$	$c^{\Gamma}=a^{\Gamma} \cdot b^{\mathrm{A}}+a^{\mathrm{M}} \star b^{\Gamma}$	$c^{\lceil }=a^{\lceil } b^{\top}$
$k^{\mathrm{M}}\left(\tau, \tau^{\prime}\right)=k\left(z=\tau, z^{\prime}=\tau^{\prime}\right)$	$c^{\mathrm{M}}=a^{\mathrm{M}} \star b^{\mathrm{M}}$	$c^{\mathrm{M}}=a^{\mathrm{M}} b^{\mathrm{M}}$

$\begin{array}{rlr}+\theta\left(t-t^{\prime}\right)\left[k^{>}\left(t, t^{\prime}\right)-k^{<}\left(t, t^{\prime}\right)\right] & c^{\mathrm{R}}=a^{\mathrm{R}} \cdot b^{\mathrm{R}} & c^{\mathrm{R}}=\left\{\begin{array}{l}a^{\mathrm{R}} b^{>}+a^{>} b^{\mathrm{A}} \\ k^{\mathrm{A}}\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right) k^{\delta}(t) \\ -\theta\left(t^{\prime}-t\right)\left[k^{>}\left(t, t^{\prime}\right)-k^{<}\left(t, t^{\prime}\right)\right]\end{array}\right. \\ c^{\mathrm{A}}=a^{\mathrm{A}} \cdot b^{\mathrm{A}} & c^{\mathrm{A}}=\left\{\begin{array}{l}a^{\mathrm{A}} b^{<}+a^{<} b^{\mathrm{R}} \\ a^{\mathrm{A}} b^{>}+a^{>} b^{\mathrm{R}}\end{array}\right.\end{array}$
$k^{\mathrm{M}}\left(\tau, \tau^{\prime}\right)=k\left(z=\tau, z^{\prime}=\tau^{\prime}\right)$
$c^{\mathrm{M}}=a^{\mathrm{M}} \star b^{\mathrm{M}}$
$c^{\lceil }=a^{\lceil }{ }^{\lceil \rceil}$

$$
\left[\mathrm{i} \partial_{t^{\prime}}-h_{\mathrm{ext}}\left(t^{\prime}\right)\right] G^{<}\left(t, t^{\prime}\right)=\int d \bar{t}\left[G^{r}(t, \bar{t}) \Sigma^{<}\left(\bar{t}, t^{\prime}\right)+G^{<}(t, \bar{t}) \Sigma^{a}\left(\bar{t}, t^{\prime}\right)\right]+\text { h.c. }
$$

"Simulator"

The Generalized Baym Kadanoff Ansatz

$$
\begin{aligned}
& {\left[\mathrm{i} \partial_{t^{\prime}}-h_{\mathrm{ext}}\left(t^{\prime}\right)\right] G^{<}\left(t, t^{\prime}\right)=\int d \bar{t}\left[G^{r}(t, \bar{t}) \Sigma^{<}\left(\bar{t}, t^{\prime}\right)+G^{<}(t, \bar{t}) \Sigma^{a}\left(\bar{E}, t^{\prime}\right)\right]+\text { h.c. }} \\
& S\left(t, t^{\prime}\right) \approx S(T) \\
& \text { The Ansatz } \\
& G^{<}(t, \tau) \approx i\left[G^{r}(t-\tau) G^{<}(\tau)-G^{<}(t) G^{r}(t-\tau)\right]
\end{aligned}
$$

The "Bridge"

The adiabatic ansatz

E. Perfetto, D. Sangalli, AM and G. Stefanucci

Phys. Rev. B 92, 205304 (2015)

The adiabatic ansatz

The Users
Perspective

on Large Scale Computational
Physics

Ab-Initio NEGF (AINEGF) a† work. Pros.

Anomalous ultra-fast carriers and gap dynamics of Black Phosphorus

Ultrafast electronic dynamics across the FeRh magnetic phase transition

Time Resolved Angle Resolved Photo Emission

Photocarrier-induced band-gap renormalization andultrafast charge
 dynamics in black phosphorus
[S. Roth".." AM and M. Griomi, in press on 2D Materials]
(a)

Photocarrier-induced band-gap renormalization andultrafast charge dynamies in black phosphorus
[S. Roth,..." AM and M. Grioni, in press on 2D Materials]

Photocarrier-induced band-gap renormalization andultrafast charge dynamics in black phosphorus

[S. Roth,..., AM and M. Grioni, in press on 2D Materials]

Fluence dependent shift

Magnetization dynamics in FeRh: Experiment and First principles simulations

[Federico Pressacco, Davide Sangalli, Andrea Marini, Faustosirotti, Matteo Gatti, Steinn Ymir Agustsson, in preparation]

The Users
Perspective

$$
\begin{aligned}
& \text { Open issues } \\
& (=\text { cons })
\end{aligned}
$$

Ab-Initio NEGF
 (AINEGF) at work. Pros.

Physics

EQ-MBPT extended to NEQ: wrong decay rates

L $\rightarrow L^{\prime}$

$$
\underline{f(t) \neq f(0) e^{-\gamma_{\alpha^{t}}} \mid}
$$

[D. Samgallii, AM, EPL, 1no (2015) 47004]

$E Q$ people approaching $N E Q$ use $E Q$ concepts: Erroneous definition of decay rates.
We do need reliable and quantitatively accurate tools

$$
O U T-o f-E Q
$$

EQ-MBPT extended to NEQ: e/h Exchange

```
nature
physics

\title{
Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides
}

Steven G. Louie \({ }^{-3,4 \star}\) and Graham R. Fleming \({ }^{1,2,6 \star}\)

\(E Q\) people approaching \(N E Q\) use EQ concepts!
Excitons=BSE. Is it correct?

Exciton spin dynamics in quantum wells
M. Z. Maialle, E. A. de Andrada e Silva,* and L. J. Sham

\section*{Beyond the one-body density matrix?}


\author{
Davide Sangalli \({ }^{1, a}\), Enrico Perfetto \({ }^{1}\), Gianluca Stefanucci \({ }^{2,3}\), and Andrea Marini \({ }^{1}\)
}

Laser Coherence: EOM, dissipation, dymamics?


\section*{Transients. Example: Pump field effects.}




Time evolution: intrinsically serial!


HUGE request of theoretical support!


\(4\}\)
The
Materials
Project

Harnessing the power of supercomputing and state of the art electronic structure methods, the Materials Project provides open web-based access to computed information on known and predicted materials as well as powerful analysis tools to inspire and design novel materials.

Project



http://www.yambo-code.org/```

