Numerical solution of the Dyson equation in the two-times plane: applications to quantum quenches and transport in many-body quantum systems

N. Lo Gullo

Turun yliopisto University of Turku
L. Dell'Anna (Università di Padova)

F. Plastina (Università della Calabria)

S. Maniscalco (University of Turku)
 (University of Turku)

(Università della Calabria)

Summary

- Dyson equation
- How to parallelize : "localize" computation
- Applications
- Some ideas to improve performances and/or precision

NEGFs approach, MBPT and KB Eqs.

Many-body quantum systems

Many-body quantum systems

MB Interactions

Many-body quantum systems

MB Interactions
 External driving

Many-body quantum systems

Particles on a contour

$$
\begin{aligned}
& \begin{array}{|c|}
\hat{H}=\hat{H}_{0}+\hat{V}+\hat{H}_{S L} \\
\hat{H}_{0}=\sum_{i, j} h_{i j} \hat{d}_{i}^{\dagger} \hat{d}_{j} \\
\text { Free }
\end{array} \frac{\hat{V}=\sum_{i, j, i^{\prime}, j^{\prime}} v_{i j i^{\prime} j^{\prime}} \hat{d}_{i}^{\dagger} d_{i^{\prime}}^{\dagger} \hat{d}_{j^{\prime}} \hat{d}_{j}}{\text { MB Interactions }} \frac{\hat{H}_{S L}=\sum_{\alpha} \sum_{k i} g_{k i}^{\alpha} \hat{D}_{\alpha, k}^{\dagger} \hat{d}_{i}+h . c .}{\text { Coupling to reservoirs }}
\end{aligned}
$$

Particles on a contour

$$
\hat{H}=\hat{H}_{0}+\hat{V}+\hat{H}_{S L}
$$

$$
\hat{H}_{0}=\sum_{i, j} h_{i j} \hat{d}_{i}^{\dagger} \hat{d}_{j} \mid \hat{V}=\sum_{i, j, i^{\prime}, j^{\prime}} v_{i j i^{\prime} j^{\prime}} \prime_{i}^{\dagger} \hat{d}_{i^{\prime}}^{\dagger} \hat{d}_{j^{\prime}} \hat{d}_{j} \quad \hat{H}_{S L}=\sum_{\alpha} \sum_{k i} g_{k i}^{\alpha} \hat{D}_{\alpha, k}^{\dagger} \hat{d}_{i}+h . c .
$$

Free

MB Interactions

Coupling to reservoirs

Keldysh-Schwinger contour
Single particle Green's function

$$
G_{i j}\left(z ; z^{\prime}\right)=-\imath\left\langle T_{\gamma} \hat{d}_{i}(z) \hat{d}_{j}\left(z^{\prime}\right)\right\rangle
$$

Kadanoff-Baym equations

$$
\begin{aligned}
{\left[\mathrm{i} \frac{d}{d t}-h(t)\right] G^{\rceil}(t, \tau) } & =\left[\Sigma_{\mathrm{tot}}^{\mathrm{R}} \cdot G^{\rceil}+\Sigma_{\mathrm{tot}}^{\rceil} \star G^{\mathrm{M}}\right](t, \tau), \\
{\left[\mathrm{i} \frac{d}{d t}-h(t)\right] G^{>}\left(t, t^{\prime}\right) } & =\left[\Sigma_{\mathrm{tot}}^{\mathrm{R}} \cdot G^{>}+\Sigma_{\mathrm{tot}}^{>} \cdot G^{\mathrm{A}}+\Sigma_{\mathrm{tot}}^{\rceil} \star G^{\lceil }\right]\left(t, t^{\prime}\right) \\
G^{<}\left(t, t^{\prime}\right)\left[-\mathrm{i} \frac{\overleftarrow{d}}{d t^{\prime}}-h\left(t^{\prime}\right)\right] & =\left[G^{\mathrm{R}} \cdot \Sigma_{\mathrm{tot}}^{<}+G^{<} \cdot \Sigma_{\mathrm{tot}}^{\mathrm{A}}+G^{\rceil} \star \Sigma_{\mathrm{tot}}^{\lceil }\right]\left(t, t^{\prime}\right) \\
\mathrm{i} \frac{d}{d t} G^{<}(t, t)-\left[h(t), G^{<}(t, t)\right]_{-} & =-\left[G^{\mathrm{R}} \cdot \Sigma_{\mathrm{tot}}^{<}+G^{<} \cdot \Sigma_{\mathrm{tot}}^{\mathrm{A}}+G^{\rceil} \star \Sigma_{\mathrm{tot}}^{\lceil }\right](t, t)+\mathrm{H} . \mathrm{c} .
\end{aligned}
$$

G. Stefanucci, R. Van Leeuwen - Nonequilibrium many-body theory of quantum systems

Numerical solutions of the KB Eqs

Integrals have to be performed up to the latest time

All matrices inside the square are needed
Each dot is a matrix
G. Stefanucci, R. Van Leeuwen - Nonequilibrium many-body theory of quantum systems

Dyson Equation and its numerical solution

Why the Dyson equation?

"Mathematics is the language in which God has written the universe" Galileo Galilei

Why the Dyson equation?

"Mathematics is the language in which God has written the universe" Galileo Galilei
" \ldots. and every branch of science has its own dialect"

$$
\begin{aligned}
G(1 ; 2) & =G_{0}(1 ; 2)+\int d 3 d 4 G_{0}(1 ; 3) \Sigma(2 ; 4) G(4 ; 2) \\
G(1 ; 2) & =\Longleftarrow
\end{aligned}
$$

The Dyson equation

"Mathematics is the language in which God has written the universe" Galileo Galilei
" \ldots and every branch of science has its own dialect"

$$
\begin{aligned}
& G(1 ; 2)=G_{0}(1 ; 2)+\int d 3 d 4 G_{0}(1 ; 3) \Sigma(2 ; 4) G(4 ; 2) \\
& G(1 ; 2)=\square
\end{aligned}
$$

From drawings to physical processes

and quantum many body theory, as in the books ${ }^{1}$ and ${ }^{2}$ as well. For me, as probably for many others, the diagram technique is more than just a method for doing calculations. Because of its symbolical but very spectacular presentation in terms of graphs it is more like the way of thinking about physical processes and theoretical approximations. Leonid Keldysh
©
Turun yliopisto University of Turku

From drawings to physical processes

and quantum many body theory, as in the books ${ }^{1}$ and ${ }^{2}$ as well. For me, as probably for many others, the diagram technique is more than just a method for doing calculations. Because of its symbolical but very spec-
tacular presentation in terms of graphs it is more like the way of thinking about physical processes and theoretical approximations. Leonid Keldysh

The menu of Self-energies

Hartree - Fock

Second Born
$3+\underset{3}{52 m}+3$

GW (RPA)

Ladder/T-Matrix

2D block cyclic distribution

$$
G(1 ; 2)=G_{0}(1 ; 2)+\int d 3 d 4 G_{0}(1 ; 3) \Sigma(2 ; 4) G(4 ; 2)
$$

dt 2dt					
dt	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
	g_{21}	g_{22}	g_{23}	g_{24}	g_{25}
2dt	g_{31}	g_{32}	g_{33}	g_{34}	g_{35}
	g_{41}	g_{42}	g_{43}	g_{44}	g_{45}
	g_{51}	g_{52}	g_{53}	g_{54}	g_{55}

R+ت

2D block cyclic distribution

$$
G(1 ; 2)=G_{0}(1 ; 2)+\int d 3 d 4 G_{0}(1 ; 3) \Sigma(2 ; 4) G(4 ; 2)
$$

dt 2dt					
	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
dt	g_{21}	g_{22}	g_{23}	g_{24}	g_{25}
2 dt	g_{31}	g_{32}	g_{33}	g_{34}	g_{35}
	g_{41}	g_{42}	g_{43}	g_{44}	g_{45}
	g_{51}	g_{52}	g_{53}	g_{54}	g_{55}

	0	1	2		
	g_{11}	g_{14}	g_{12}	g_{15}	g_{13}
0	g_{31}	g_{34}	g_{32}	g_{35}	g_{33}
	g_{51}	g_{54}	g_{52}	g_{55}	g_{53}
	g_{21}	g_{24}	g_{22}	g_{25}	g_{23}
1	g_{41}	g_{44}	g_{42}	g_{45}	g_{43}

- Processes are elements in a process grid
- Each process receives chunk which contain a whole ($\mathrm{t} ; \mathrm{t}^{\prime}$) point
- Each computation should minimize (avoid if possible) communication

General scheme

General approach

$$
\begin{aligned}
G^{R / A}\left(t_{n}, t_{n}^{\prime}\right)= & {\left[G_{0}^{R / A}+G_{0}^{R / A} \circ \Sigma^{R / A} \circ G^{R / A}\right]\left(t_{n}, t_{n}^{\prime}\right) } \\
G^{\lessgtr}\left(t_{n}, t_{n}^{\prime}\right)= & {\left[G_{0}^{\lessgtr}+G_{0}^{R} \circ \Sigma^{\lessgtr} \circ G^{A}\right.} \\
& \left.+G_{0}^{\lessgtr} \circ \Sigma^{A} \circ G^{A}+G_{0}^{R} \circ \Sigma^{R} \circ G^{\lessgtr}\right]\left(t_{n}, t_{n}^{\prime}\right)
\end{aligned}
$$

General approach

- Initialization $\quad g_{0}\left(1 ; 1^{\prime}\right)$
- Calculation of the self-energy $\quad \Sigma\left(1 ; 1^{\prime}\right)$
- Solution of the Dyson Equation

General approach

- Initialization $\quad g_{0}\left(1 ; 1^{\prime}\right)$
- Calculation of the self-energy $\Sigma\left(1 ; 1^{\prime}\right)$

$$
2
$$

- Solution of the Dyson Equation

General approach

- Initialization $\quad g_{0}\left(1 ; 1^{\prime}\right)$
- Calculation of the self-energy $\Sigma\left(1 ; 1^{\prime}\right)$
- Solution of the Dyson Equation

$$
2
$$

General approach

- Initialization $g_{0}\left(1 ; 1^{\prime}\right)$
- Calculation of the self-energy $\Sigma\left(1 ; 1^{\prime}\right)$
- Solution of the Dyson Equation

Checks: Symmetries, particle current due to MB SE

$$
\begin{aligned}
G^{\lessgtr}\left(1 ; 1^{\prime}\right) & =-\left[G^{\lessgtr}\left(1^{\prime} ; 1\right)\right]^{*} \\
G^{R}-G^{A} & =G^{>}-G^{<}
\end{aligned} \quad I_{M B}(t)=2 \operatorname{Re}\left\{\operatorname{Tr}\left[\Sigma_{M B}^{<} \cdot G^{A}+\Sigma_{M B}^{R} \cdot G^{<}\right](t ; t)\right\}
$$

Quenches in bosonic systems

Interacting bosons

$$
\hat{H}=\hat{H}_{0}+\hat{V}(t)
$$

$$
\hat{H}_{0}=\sum_{i} \epsilon_{i} \hat{b}_{i}^{\dagger} \hat{b}_{i}-\sum_{\langle i, j\rangle} \frac{J}{2}\left(\hat{b}_{i}^{\dagger} \hat{b}_{j}+\text { H.c. }\right)
$$

$$
\hat{V}(t)=\frac{U(t)}{2} \sum_{i} \hat{b}_{i}^{\dagger} \hat{b}_{i}^{\dagger} \hat{b}_{i} \hat{b}_{i}
$$

top lobercrestronergorererer

N. Lo Gullo et al, PRB 94, 184308 (2016)

诜 Turun yliopisto University of Turku

Propagation of correlations in 1D

Propagation of correlations in 2D

Isotropic

Anisotropic

N. Lo Gullo et al, PRB 94, 184308 (2016)

Comparison with ED

Homogeneous

Harmonic potential at $i=2$

N. Lo Gullo et al, PRB 94, 184308 (2016)

N: Lo Gullo

Comparison with ED

Homogeneous

Harmonic potential at $i=2$

N. Lo Gullo et al, PRB 94, 184308 (2016)

Anomalous diffusion in aperiodic geometries

The model

$$
\hat{H}=\hat{H}_{0}+\hat{V}
$$

$$
\begin{array}{r}
\hat{H}_{0}=\sum_{i \sigma} \epsilon_{i} \hat{n}_{i \sigma}-\frac{J}{2} \sum_{i r}^{\hat{c}_{i \sigma}^{\hat{i}} \hat{c}_{i+1 \sigma}+\text { h.c. }} \\
\frac{\hat{V}=U \sum_{i} \hat{n}_{i t} \hat{n}_{i l} \mid}{}
\end{array}
$$

The model

$$
\hat{H}=\hat{H}_{0}+\hat{V}
$$

$$
\hat{H_{0}}=\sum_{i \sigma} \epsilon_{i} \hat{n}_{i \sigma}-\frac{J}{?} \sum_{i \sigma} \hat{C}_{i \sigma}^{\dot{i}} \hat{C}_{i}+1 \sigma+1 \text { n.c. }
$$

$$
\hat{V}=T \sum_{i} \hat{n}_{i \uparrow}{\hat{n_{i}}}
$$

N: Lo Gullo

OII
$Q_{T-1} \oplus$
Turun yliopisto University of Turku

Non-interacting case

Aubry-André Model
$\epsilon_{i}=\lambda \cos (2 \pi \tau i)$
Metal-to-insulator transition

Non-interacting case

$$
\begin{gathered}
\text { Aubry-André Model } \\
\epsilon_{i}=\lambda \cos (2 \pi \tau i)
\end{gathered}
$$

Spreading of correlations

$$
P_{i}(t)=\left|G_{i_{i}}^{<}(0 ; t)\right|^{2}
$$

A. Suto J. Stat. Phys. 56, 525 (1989)

Non-interacting case

$$
\begin{gathered}
\text { Aubry-André Model } \\
\epsilon_{i}=\lambda \cos (2 \pi \tau i)
\end{gathered}
$$

Spreading of correlations

$$
\begin{gathered}
P_{i}(t)=\left|G_{i_{0} i}^{<}(0 ; t)\right|^{2} \\
\sigma(t) \propto t^{\alpha}
\end{gathered}
$$

A. Suto J. Stat. Phys. 56, 525 (1989)

Non-interacting case

Aubry-André Model
$\epsilon_{i}=\lambda \cos (2 \pi \tau i)$
Onsite Fibonacci Model

$$
\epsilon_{i}=\lambda(\lfloor(i+1) / \tau\rfloor-\lfloor i / \tau\rfloor)
$$

Spreading of correlations

$$
\begin{gathered}
P_{i}(t)=\left|G_{i_{0} i}^{<}(0 ; t)\right|^{2} \\
\sigma(t) \propto t^{\alpha}
\end{gathered}
$$

A. Suto J. Stat. Phys. 56, 525 (1989)

A.D. in interacting systems

$$
\underbrace{\text { Meveruencer }}_{t \rightarrow 0} \Delta N(t)=\frac{\left(N_{e}(t)-N_{o}(t)\right)}{N_{t o t}}
$$

H.P. Luschen et al., Phys. Rev. Lett. 119, 260401 (2017)

A.D. in interacting systems

$$
\Delta N(t)=\frac{\left(N_{e}(t)-N_{o}(t)\right)}{N_{t o t}}
$$

H.P. Luschen et al., Phys. Rev. Lett. 119, 260401 (2017)

A.D. in interacting systems

$$
\Delta N(t)=\frac{\left(N_{e}(t)-N_{o}(t)\right)}{N_{t o t}}
$$

H.P. Luschen et al., Phys. Rev. Lett. 119, 260401 (2017)

A.D. in interacting systems

$$
\Delta N(t)=\frac{\left(N_{e}(t)-N_{o}(t)\right)}{N_{t o t}}
$$

H.P. Luschen et al., Phys. Rev. Lett. 119, 260401 (2017)

Geometry - interaction interplay (AAM)

Particle imbalance $\Delta N(t)=\frac{\left(N_{e}(t)-N_{o}(t)\right)}{N_{t o t}}$

OFM

J. Settino et all, arxiv:1809.10524

Power law behavior

$$
\Delta N(t) \approx a t^{-\beta} \quad t J \gg 1
$$

Theory (NEGF)

Experiment

J. Settino et all, arxiv:1809.10524

Convergency check

$$
I_{M B}(t)=2 \operatorname{Re}\left\{\operatorname{Tr}\left[\Sigma_{M B}^{<} \cdot G^{A}+\Sigma_{M B}^{R} \cdot G^{<}\right](t ; t)\right\}
$$

W.N. Talarico et all, arxiv:1809.19111

SIAM

The model

$$
\hat{H}=\hat{H}_{0}+\hat{V}+\hat{H}_{S L}
$$

$$
\hat{H}_{0}=\sum_{n} \epsilon \hat{n}_{\sigma} \quad \hat{V}=U \hat{n}_{\uparrow} \hat{n}_{\downarrow}
$$

$$
\hat{H}_{L S}=\sum_{\alpha} \sum_{k_{\alpha} \sigma} T_{k_{\alpha} \sigma, \alpha}\left[\hat{d}_{\sigma}^{\dagger} \hat{c}_{k_{\alpha} \sigma, \alpha}+\hat{c}_{k_{\alpha} \sigma, \alpha}^{\dagger} \hat{\alpha}_{\sigma}\right]
$$

Strong coupling low temperature

Kondo regime

A signature of the Kondo regime

W.N. Talarico et all, arxiv:1809.19111

N: Lo Gullo

A signature of the Kondo regime

W.N. Talarico et all, arxiv:1809.19111

A signature of the Kondo regime

A signature of the Kondo regime

W.N. Talarico et all, arxiv:1809.19111

N: Lo Gullo

Open issues

The "inversion problem"

$$
\begin{aligned}
& G^{R(l+1)}\left(t_{n}, t_{n}^{\prime}\right)=\left[R^{R(l)} \circ G_{0}^{R}\right]\left(t_{n}, t_{n}^{\prime}\right) \\
& R^{R(l)}\left(t_{n}, t_{n}^{\prime}\right)=\left[\left(\mathrm{Id}_{t}-G_{0}^{R} \circ \Sigma^{R(l)}\right)^{-1}\right]\left(t_{n}, t_{n}^{\prime}\right)
\end{aligned}
$$

We need one inversion of $a(n s \times n t) \times(n s \times n t)$

The "inversion problem" : eliminate the problem

$$
\begin{aligned}
& G^{R(l+1)}\left(t_{n}, t_{n}^{\prime}\right)=\left[R^{R(l)} \circ G_{0}^{R}\right]\left(t_{n}, t_{n}^{\prime}\right) \\
& R^{R(l)}\left(t_{n}, t_{n}^{\prime}\right)=\left[\left(\mathrm{Id}_{t}-G_{0}^{R} \circ \Sigma^{R(l)}\right)^{-1}\right]\left(t_{n}, t_{n}^{\prime}\right)
\end{aligned}
$$

We need one inversion of a $(\mathrm{ns} \times \mathrm{nt}) \times(\mathrm{ns} \times \mathrm{nt})$

Is it possible to avoid it? (In the KBE there is no inversion)

The "inversion problem" : eliminate the problem

$$
\begin{aligned}
& G^{R(l+1)}\left(t_{n}, t_{n}^{\prime}\right)=\left[R^{R(l)} \circ G_{0}^{R}\right]\left(t_{n}, t_{n}^{\prime}\right) \\
& R^{R(l)}\left(t_{n}, t_{n}^{\prime}\right)=\left[\left(\mathrm{Id}_{t}-G_{0}^{R} \circ \Sigma^{R(l)}\right)^{-1}\right]\left(t_{n}, t_{n}^{\prime}\right)
\end{aligned}
$$

We need one inversion of a $(\mathrm{ns} \times \mathrm{nt}) \times(\mathrm{ns} \times \mathrm{nt})$
Using, in the collisional integrals, the relation (?)

$$
G^{R}\left(t ; t^{\prime}\right)=\theta\left(t-t^{\prime}\right)\left(G^{>}\left(t ; t^{\prime}\right)-G^{<}\left(t ; t^{\prime}\right)\right)
$$

The "inversion problem" : eliminate the problem

$$
\begin{aligned}
& G^{R(l+1)}\left(t_{n}, t_{n}^{\prime}\right)=\left[R^{R(l)} \circ G_{0}^{R}\right]\left(t_{n}, t_{n}^{\prime}\right) \\
& R^{R(l)}\left(t_{n}, t_{n}^{\prime}\right)=\left[\left(\mathrm{Id}_{t}-G_{0}^{R} \circ \Sigma^{R(l)}\right)^{-1}\right]\left(t_{n}, t_{n}^{\prime}\right)
\end{aligned}
$$

We need one inversion of a $(\mathrm{ns} \times \mathrm{nt}) \times(\mathrm{ns} \times \mathrm{nt})$

Using, in the collisional integrals, the relation (?)

What about the singular parts? (Single-particle spectrum at HF level)

The "inversion problem" : one out, one in
$G^{R}\left(t ; t^{\prime}\right)=\theta\left(t-t^{\prime}\right)\left(G^{>}\left(t ; t^{\prime}\right)-G^{<}\left(t ; t^{\prime}\right)\right)$
Drive (but let us drop the HF part) $\quad \hat{h} \rightarrow \hat{h}(t)$

The "inversion problem" : one out, one in
$G^{R}\left(t ; t^{\prime}\right)=\theta\left(t-t^{\prime}\right)\left(G^{>}\left(t ; i^{\prime}\right)-G^{<}\left(t ; t^{\prime}\right)\right)$
Drive (but let us drop the HF part) $\quad \hat{h} \rightarrow \hat{h}(t)$ $g_{0}\left(1 ; 1^{\prime}\right) \rightarrow G_{0}\left(1 ; 1^{\prime}\right)$

Only one inversion

$$
G\left(1 ; 1^{\prime}\right)=G_{0}\left(1 ; 1^{\prime}\right)+G_{0} \circ \Sigma \circ G\left(1 ; 1^{\prime}\right)
$$

$$
A^{R}\left(t ; t^{\prime}\right)=\theta\left(t-t^{\prime}\right)\left(A^{>}\left(t ; t^{\prime}\right)-A^{<}\left(t ; t^{\prime}\right)\right)
$$

The "inversion problem" : one out, one in
$G^{R}\left(t ; t^{\prime}\right)=\theta\left(t-t^{\prime}\right)\left(G^{>}\left(t ; t^{\prime}\right)-G^{<}\left(t ; t^{\prime}\right)\right)$
What about the HF?

The "inversion problem" : one out, one in $G^{R}\left(t ; t^{\prime}\right)=\theta\left(t-t^{\prime}\right)\left(G^{>}\left(t ; i^{\prime}\right)-G^{<}\left(t ; t^{\prime}\right)\right)$

What about the HF?

$$
\begin{aligned}
& g_{0}\left(1 ; 1^{\prime}\right) \rightarrow G_{0}^{H F}\left(1 ; 1^{\prime}\right) \\
& G\left(1 ; 1^{\prime}\right)=G_{0}^{H F}\left(1 ; 1^{\prime}\right)+G_{0}^{H F} \circ \Sigma \circ G\left(1 ; 1^{\prime}\right)
\end{aligned}
$$

The "inversion problem" : one out, one in

$G^{R}\left(t ; t^{\prime}\right)=\theta\left(t-t^{\prime}\right)\left(G^{>}\left(t ; t^{\prime}\right)-G^{<}\left(t ; t^{\prime}\right)\right)$
What about the HF?

$$
\begin{aligned}
& g_{0}\left(1 ; 1^{\prime}\right) \rightarrow G_{0}^{H F}\left(1 ; 1^{\prime}\right) \\
& G\left(1 ; 1^{\prime}\right)=G_{0}^{H F}\left(1 ; 1^{\prime}\right)+G_{0}^{H F} \circ \Sigma \circ G\left(1 ; 1^{\prime}\right)
\end{aligned}
$$

Perhaps there is gain if done locally

The "inversion problem" : one out, one in

$G^{R}\left(t ; t^{\prime}\right)=\theta\left(t-t^{\prime}\right)\left(G^{>}\left(t ; t^{\prime}\right)-G^{<}\left(t ; t^{\prime}\right)\right)$
What about the HF?

$$
\begin{aligned}
& g_{0}\left(1 ; 1^{\prime}\right) \rightarrow G_{0}^{H F}\left(1 ; 1^{\prime}\right) \\
& G\left(1 ; 1^{\prime}\right)=G_{0}^{H F}\left(1 ; 1^{\prime}\right)+G_{0}^{H F} \circ \Sigma \circ G\left(1 ; 1^{\prime}\right)
\end{aligned}
$$

Yes, but in a clever way

0			1		2
	g g_{11}	g_{14}	g_{12}	g_{15}	g_{13}
0	g_{31}	g_{34}	g_{32}	g_{35}	g_{33}
	g_{51}	g_{54}	O_{52}	(95)	${ }_{5}$
	g_{21}	g_{24}	(922)	g_{25}	g_{23}
1	g_{41}	94	g_{42}	g_{45}	g_{43}

Improve integration scheme

$$
[a \circ b]\left(t_{n}, t_{m}^{\prime}\right)=\sum_{p=0}^{n_{t}-1} w_{p} a\left(t_{n}, t_{p}\right) b\left(t_{p}, t_{m}^{\prime}\right) \quad \text { Homogeneous grid } \quad w_{p}=d t
$$

Improve integration scheme

$$
[a \circ b]\left(t_{n}, t_{m}^{\prime}\right)=\sum_{p=0}^{n_{t}-1} w_{p} a\left(t_{n}, t_{p}\right) b\left(t_{p}, t_{m}^{\prime}\right) \quad \begin{aligned}
& \text { Choose different weights to } \\
& \\
& \text { improve the propagation scheme }
\end{aligned}
$$

Improve integration scheme

$$
[a \circ b]\left(t_{n}, t_{m}^{\prime}\right)=\sum_{p=0}^{n_{t}-1} w_{p} a\left(t_{n}, t_{p}\right) b\left(t_{p}, t_{m}^{\prime}\right) \quad \begin{aligned}
& \text { Choose different weights to } \\
& \\
& \text { improve the propagation scheme }
\end{aligned}
$$

One has to be careful to certain issues

Improve integration scheme

$$
[a \circ b]\left(t_{n}, t_{m}^{\prime}\right)=\sum_{p=0}^{n_{t}-1} w_{p} a\left(t_{n}, t_{p}\right) b\left(t_{p}, t_{m}^{\prime}\right) \quad \begin{aligned}
& \text { Choose different weights to } \\
& \\
& \text { improve the propagation scheme }
\end{aligned}
$$

One has to be careful to certain issues : identiy

$$
\Delta\left(t_{n}, t_{m}\right)=\frac{\delta_{n m}}{w_{n}}
$$

Improve integration scheme

One has to be careful to certain issues : the integration interval

$$
[a \circ b]\left(t_{n}, t_{m}^{\prime}\right)=\sum_{p=0}^{n_{t}-1} w_{p} a\left(t_{n}, t_{p}\right) b\left(t_{p}, t_{m}^{\prime}\right)
$$

Improve integration scheme

One has to be careful to certain issues : the integration interval

$$
[a \circ b]\left(t_{n}, t_{m}^{\prime}\right)=\sum_{p=0}^{n_{t}-1} w_{p} a\left(t_{n}, t_{p}\right) b\left(t_{p}, t_{m}^{\prime}\right)
$$

Improve integration scheme

One has to be careful to certain issues : the integration interval

$$
[a \circ b]\left(t_{n}, t_{m}^{\prime}\right)=\sum_{p=0}^{n_{t}-1} w_{p} a\left(t_{n}, t_{p}\right) b\left(t_{p}, t_{m}^{\prime}\right)
$$

Improve integration scheme

One has to be careful to certain issues : the integration interval

$$
\begin{aligned}
{[a \circ b]\left(t_{n}, t_{m}^{\prime}\right) } & =\sum_{p=0}^{n_{t}-1} w_{p} a\left(t_{n}, t_{p}\right) b\left(t_{p}, t_{m}^{\prime}\right) \\
& w_{p} \rightarrow w_{p}^{(n)}
\end{aligned}
$$

Improve integration scheme

One has to be careful to certain issues : the integration interval

$$
\begin{aligned}
{[a \circ b]\left(t_{n}, t_{m}^{\prime}\right) } & =\sum_{p=0}^{n_{t}-1} w_{p} a\left(t_{n}, t_{p}\right) b\left(t_{p}, t_{m}^{\prime}\right) \\
& w_{p} \rightarrow w_{p}^{(m)}
\end{aligned}
$$

Improve integration scheme

One has to be careful to certain issues : the inverse

$$
\sum_{p} w_{p}^{(n)} K^{R}\left(t_{n} ; t_{p}\right) G^{R}\left(t_{p} ; t_{m}^{\prime}\right)=g_{0}^{R}\left(t_{n} ; t_{m}^{\prime}\right)
$$

Improve integration scheme

One has to be careful to certain issues : the inverse

$$
\sum_{p} w_{p}^{(n)} K^{R}\left(t_{n} ; t_{p}\right) G{ }^{R}\left(t_{p} ; t_{m}^{\prime}\right)=g_{0}^{R}\left(t_{n} ; t_{m}^{\prime}\right)
$$

Improve integration scheme

One has to be careful to certain issues : the inverse

$$
\begin{aligned}
& \sum_{p} w_{p}^{(n)} K^{R}\left(t_{n} ; t_{p}\right) G^{R}\left(t_{p} ; t_{m}^{\prime}\right)=g_{0}^{R}\left(t_{n} ; t_{m}^{\prime}\right) \\
& \sum_{p} w_{p}^{(n)}\left(K^{R}\right)^{-1}\left(t_{n} ; t_{p}\right) K^{R}\left(t_{p} ; t_{m}^{\prime}\right)=\Delta\left(t_{n} ; t_{m}^{\prime}\right)=\frac{\delta_{n m}}{w_{n}^{(n)}}
\end{aligned}
$$

Next

- Solve the "inverse problem"
- Distribute the library

- Extend it to other approximations and systems

Computational facilities

UNIVERSTIȦ

 DELLA CALABRIA

