Speeding up GKBA calculations using initial correlations

Daniel Karlsson

University of Jyväskylä, Jyväskylä, Finland

Kiel, March 2019

Collaborators Jyväskylä-Rome

Robert van Leeuwen

Markku Hyrkäs

Gianluca Stefanucci

Enrico Perfetto

University of Jyväskylä, Jyväskylä, Finland

Positive steady-state spectral functions

\square How to ensure positive spectral functions in steady-state when using diagrammatics?See Markku's poster!

Outline

The Kadanoff-Baym EquationsThe Generalized Kadanoff-Baym Ansatz (GKBA)\square Different strategies to include initial correlations within GKBAStrategy 1: GKBA for imaginary times
\square Strategy 2: Write initial correlations in terms of real timesNumerical example in an inhomogeneous system

Time-scaling problem of the Kadanoff-Baym Equations (KBE)

From KBE to the equation of motion for ρ

Subtracting the two KBE equations and letting $t^{\prime} \rightarrow t$ yields equation for density matrix $\rho(t)=-i \mathcal{G}^{<}(t, t)$:

$$
\begin{gathered}
\partial_{t} \rho(t)+i\left[h_{\mathrm{HF}}(t), \rho(t)\right]=-\left(\mathcal{I}(t)+\mathcal{I}^{\mathrm{ic}}(t)+\text { H.c. }\right) \\
\mathcal{I}(t)=\int_{0}^{t} \mathrm{~d} \bar{t}\left[\Sigma^{>}(t, \bar{t}) \mathcal{G}^{<}(\bar{t}, t)-\Sigma^{<}(t, \bar{t}) \mathcal{G}^{>}(\bar{t}, t)\right] \quad \text { collision integral } \\
\mathcal{I}^{\mathrm{ic}}(t)=-i \int_{0}^{\beta} \mathrm{d} \bar{\tau} \Sigma^{\rceil}(t, \bar{\tau}) \mathcal{G}^{\lceil }(\bar{\tau}, t) \quad \text { initial correlation integral }
\end{gathered}
$$

$\square \rho(t)$ is single-time object, and involves real-time convolutions -> Scales like (nr of timesteps) ${ }^{2}$: one order of magnitude gained compared to KBE!

Caveat: Not a closed equation for $\rho(t)$; Collision integral involves off-diagonal parts of G .Fix for real times: the GKBA

$$
\begin{gathered}
\partial_{t} \rho(t)+i\left[h_{\mathrm{HF}}(t), \rho(t)\right]=-\left(\mathcal{I}(t)+\mathcal{I}^{\mathrm{ic}}(t)+\text { H.c. }\right), \\
\text { TheGMA } \mathcal{I}(t)=\int_{0}^{t} \mathrm{~d} \bar{t}\left[\Sigma^{>}(t, \bar{t}) \mathcal{G}^{<}(\bar{t}, t)-\Sigma^{<}(t, \bar{t}) \mathcal{G}^{>}(\bar{t}, t)\right] \quad \text { collision integral }
\end{gathered}
$$

In the collision integral, we make the approximation

$$
\begin{aligned}
\mathcal{G}^{<}\left(t, t^{\prime}\right) & =-\left[\mathcal{G}^{R}\left(t, t^{\prime}\right) \rho\left(t^{\prime}\right)-\rho(t) \mathcal{G}^{A}\left(t, t^{\prime}\right)\right] \\
\mathcal{G}^{>}\left(t, t^{\prime}\right) & =\left[\mathcal{G}^{R}\left(t, t^{\prime}\right) \bar{\rho}\left(t^{\prime}\right)-\bar{\rho}(t) \mathcal{G}^{A}\left(t, t^{\prime}\right)\right]
\end{aligned}
$$

To close the equation, the retarded/advanced Green's function come from non-interacting system

$$
\mathcal{G}^{R}\left(t, t^{\prime}\right)=-i \theta\left(t-t^{\prime}\right) \mathcal{T}\left\{e^{-i \int_{t^{\prime}}^{t} h_{\mathrm{HF}}(\bar{t}) d \bar{t}}\right\}
$$

Useful manipulations within GKBA: 'Group property':

$$
\mathcal{G}^{R}\left(t, t^{\prime}\right)=i \mathcal{G}^{R}\left(t, t_{0}\right) \mathcal{G}^{R}\left(t_{0}, t^{\prime}\right)
$$

The GKBA

$$
\begin{aligned}
& \mathcal{G}^{<}\left(t, t^{\prime}\right)=-\left[\mathcal{G}^{R}\left(t, t^{\prime}\right) \rho\left(t^{\prime}\right)-\rho(t) \mathcal{G}^{A}\left(t, t^{\prime}\right)\right] \\
& \mathcal{G}^{>}\left(t, t^{\prime}\right)=\left[\mathcal{G}^{R}\left(t, t^{\prime}\right) \bar{\rho}\left(t^{\prime}\right)-\bar{\rho}(t) \mathcal{G}^{A}\left(t, t^{\prime}\right)\right]
\end{aligned}
$$

P. Lipavský, V. Špička \& B. Velický; Generalized Kadanoff-Baym ansatz for deriving quantum transport equations. PRB (1986)

The fast GKBA allows for studying:
 Atoms

E. Perfetto, A.-M. Uimonen, R. van Leeuwen, and G. Stefanucci, PRA 92, 033419 (2015).

Biologically relevant molecules

E. Perfetto, D. Sangalli, A. Marini, and G. Stefanucci, JCPL. 9, 1353 (2018).

Organic compounds

G. Pal, Y. Pavlyukh,W. Hübner, and H. C. Schneider, EPJB 79, 327 (2011).
E. V. Boström, A. Mikkelsen, C. Verdozzi, E. Perfetto, and G. Stefanucci, Nano Lett. 18, 785 (2018).

Extended systems

D. Sangalli, S. Dal Conte, C. Manzoni, G. Cerullo, and A. Marini, PRB 93, 195205 (2016).

Two-dimensional layered materials
E. A. Pogna et al ACS Nano 10, 1182 (2016).
A. Molina-Sánchez, D. Sangalli, L. Wirtz, and A. Marini, Nano Lett. 17, 4549 (2017).

Doublon formation by ion impact
K. Balzer,M.R. Rasmussen, N. Schlünzen, J.-P. Joost, \& M. Bonitz PRL 121, 267602 (2018).

The issue with the GKBA

Adiabatic switching technique

What happens if we anyway start with a correlated state?

Calculation 1: Adiabatic switch-on from $T=-100$
Calculation 2: Save density matrix $\rho_{e q}$ from adiabatic switch at time $t=0$, then start another calculation from $\mathrm{t}=0$ with $\rho(t=0)=\rho_{e q}$. IC term neglected.
$\partial_{t} \rho(t)+i\left[h_{\mathrm{HF}}(t), \rho(t)\right]=-\left(\mathcal{I}(t)+\mathbf{L}^{\text {xc }}(t)+\right.$ H.c. $)$
What went wrong? Stationarity condition:

$$
\mathcal{I}^{\mathrm{ic}}(0)=\mathcal{I}(t)+\mathcal{I}^{\mathrm{ic}}(t)
$$

Intricate cancellation from initial correlation term and collision integral

Specific goals

Stationarity without external fieldsObtain expression for initial correlations independent on adiabatic switchingExpressions valid without assuming losses, or homogenous systemsBasis-independent expressionsSeparate the time propagation from the obtaining of the initial stateEfficient implementation in existing GKBA codes
Outline

The Kadanoff-Baym EquationsThe Generalized Kadanoff-Baym Ansatz (GKBA)Different strategies to include initial correlations within GKBA\square Strategy 1: GKBA for imaginary times\square Strategy 2: Write initial correlations in terms of real times

$$
\mathcal{I}^{\mathrm{ic}}(t)=-i \int_{0}^{\beta} \mathrm{d} \bar{\tau} \Sigma^{\rceil}(t, \bar{\tau}) \mathcal{G}^{\lceil }(\bar{\tau}, t)
$$Numerical example in an inhomogeneous system

Initial correlations within GKBA: The lesser function $\mathcal{G}^{<}\left(t, t^{\prime}\right)$

Strategy 1: Make 'educated guess' to obtain GKBA for mixed Green's functions! Go back to Dyson equation for the full contour:

$$
\mathcal{G}\left(z, z^{\prime}\right)=\mathcal{G}_{0}\left(z, z^{\prime}\right)+\int_{\gamma} \mathrm{d} \bar{z} \mathrm{~d} \bar{z}^{\prime} \mathcal{G}(z, \bar{z}) \Sigma_{c}\left(\bar{z}, \bar{z}^{\prime}\right) \mathcal{G}_{0}\left(\bar{z}^{\prime}, z^{\prime}\right)
$$

Use of Langreth rules yields, for the lesser function

$$
\begin{aligned}
\hat{\mathcal{G}}^{<}\left(t, t^{\prime}\right)= & \hat{\mathcal{G}}^{\mathrm{R}}\left(t, t_{0}\right) \hat{\mathcal{G}}^{<}\left(t_{0}, t_{0}\right) \hat{\mathcal{G}}^{\mathrm{A}}\left(t_{0}, t^{\prime}\right)+\left[\hat { \mathcal { G } } ^ { \mathrm { R } } \cdot \left(\hat{\Sigma}_{\mathrm{c}} \star \mathrm{~g}^{\left.\left.\mathrm{M} / \star \hat{\Sigma}_{\mathrm{c}}^{\mathrm{c}}\right) \cdot \hat{\mathcal{G}}^{\mathrm{A}}\right]}\right.\right. \\
& +\mathrm{i} \hat{\mathcal{G}}^{\mathrm{R}}\left(t, t_{0}\right)\left[\hat{\mathcal{G}}^{\mathrm{M}} \star \hat{\mathcal{G}}^{\mathrm{A}}\right]\left(t_{0}, t^{\prime}\right)-\mathrm{i}\left[\hat{\mathcal{G}}^{\mathrm{R}} \cdot \hat{\mathcal{G}}^{\mathrm{G}}\right]\left(t, t_{0}\right) \hat{\mathcal{G}}^{\mathrm{A}}\left(t_{0}, t^{\prime}\right)
\end{aligned}
$$

For non-interacting systems, only the first term is non-zero, and can be written in GKBA form

$$
\mathcal{G}^{<}\left(t, t^{\prime}\right)=-\left[\mathcal{G}^{R}\left(t, t^{\prime}\right) \rho\left(t^{\prime}\right)-\rho(t) \mathcal{G}^{A}\left(t, t^{\prime}\right)\right] \quad \text { using } \quad \rho\left(t^{\prime}\right)=\mathcal{G}^{R}\left(t^{\prime}, t_{0}\right) \rho\left(t_{0}\right) \mathcal{G}^{A}\left(t_{0}, t^{\prime}\right)
$$

Initial correlations within GKBA: The right function $\mathcal{G}^{\dagger}(t, \tau)$

Strategy 1: Make 'educated guess' to obtain GKBA for right Green's function! Go back to Dyson equation for the full contour:

$$
\mathcal{G}\left(z, z^{\prime}\right)=\mathcal{G}_{0}\left(z, z^{\prime}\right)+\int_{\gamma} \mathrm{d} \bar{z} \mathrm{~d} \bar{z}^{\prime} \mathcal{G}(z, \bar{z}) \Sigma_{c}\left(\bar{z}, \bar{z}^{\prime}\right) \mathcal{G}_{0}\left(\bar{z}^{\prime}, z^{\prime}\right)
$$

Use of Langreth rules yields, for the right function

$$
\mathcal{G}^{\top}(t, \tau)=i \mathcal{G}^{R}\left(t, t_{0}\right) \mathcal{G}^{M}(0, \tau)+\left[\mathcal{G}^{R} \cdot \tau^{\mathcal{V}} * \mathcal{G}^{M}\right](t, \tau)
$$

For non-interacting systems, only first term is non-zero. GKBA for initial correlations?
Fails. All simple ways to do so gives problems (lack of stationarity in absense of external fields)

Strategy 2: Rewrite the initial correlations in terms of real times, and then apply usual GKBA

The initial correlation term in equilibrium

Inspiration: In equilibrium for $\mathrm{t} \leq t_{0}=0$, from the exact KBE equations, $\quad \mathcal{I}^{\text {ic }}(t)=-i \int_{0}^{\beta} \mathrm{d} \bar{\tau} \Sigma^{\rceil}(t, \bar{\tau}) \mathcal{G}^{\lceil }(\bar{\tau}, t)$
G. Stefanucci, R. van Leeuwen, Nonequilibrium

Many-Body Theory of Quantum Systems (2013)
$\mathcal{I}^{\text {ic }}(t)=\int_{-\infty}^{0} \mathrm{~d} \bar{t}\left[\Sigma^{>}(t-\bar{t}) \mathcal{G}^{<}(\bar{t}-t)-\Sigma^{<}(t-\bar{t}) \mathcal{G}^{>}(\bar{t}-t)\right]$
Proven via

Equilibrium
D. Karlsson, R. van Leeuwen, E. Perfetto, G. Stefanucci, PRB (2018)

$$
\mathcal{I}^{\mathrm{ic}}(t)=\int_{-\infty}^{0} \mathrm{~d} \bar{t}\left[\Sigma^{>}(t, \bar{t}) \mathcal{G}^{<}(\bar{t}, t)-\Sigma^{<}(t, \bar{t}) \mathcal{G}^{>}(\bar{t}, t)\right]
$$

$$
\begin{aligned}
\mathcal{G}^{\Gamma}\left(\tau, t_{2}\right) & =e^{\mu \tau} \mathcal{G}_{\text {aux }}^{>}\left(-i \tau, t_{2}\right) \\
\mathcal{G}_{\text {aux }}^{<}\left(\omega, t^{\prime}\right) & =-e^{-\beta(\omega-\mu)} \mathcal{G}_{\text {aux }}^{>}\left(\omega, t^{\prime}\right)
\end{aligned}
$$

Out of equilibrium

Using "half" of fluctuation-dissipation theorem

Initial correlations, explicit expressions

$\mathcal{I}^{\mathrm{ic}}(t)=\int_{-\infty}^{0} \mathrm{~d} \bar{t}\left[\Sigma^{>}(t, \bar{t}) \mathcal{G}^{<}(\bar{t}, t)-\Sigma^{<}(t, \bar{t}) \mathcal{G}^{>}(\bar{t}, t)\right]$
Same shape as for adiabatic switching, but more general! Valid for closed systems, finite temp etc.

Adiabatic switchings (or losses) + homogeneous systems: Restart technique exists. For a review, see: Bonitz, M., Balzer, K., Schlünzen, N., Rasmussen, M. R., \& Joost, J.-P. PSSB (2019)

We can apply GKBA, with HF propagators or general propagators! For general propagators, one can prove stationarity condition!

$$
\mathcal{I}^{\mathrm{ic}}(0)=\mathcal{I}(t)+\mathcal{I}^{\mathrm{ic}}(t)
$$

But, we still have to do time integrations.
Use group property of HF propagators: $\quad \mathcal{G}^{R}(t, \bar{t})=i \mathcal{G}^{R}(t, 0) \mathcal{G}^{R}(0, \bar{t})$
Hamiltonian constant for $\bar{t} \leq 0$ (equilibrium): $\quad \mathcal{G}^{R}(0, \bar{t})=-i e^{i h_{\mathrm{HF}}^{\mathrm{eq}} \bar{t}} \quad$ Allows for analytical calculations
We obtained two numerically efficient cases within GKBA:
Case 1: 2nd Born. Case 2: $G W_{0}$, where W_{0} taken from equilibrium calculations.
$\Sigma_{i j}^{<}(t, \bar{t})=\sum_{m n p q r s} v_{i r p n}(t) w_{m q s j}(\bar{t}) \mathcal{G}_{n m}^{<}(t, \bar{t}) \mathcal{G}_{p q}^{<}(t, \bar{t}) \mathcal{G}_{s r}^{>}(\bar{t}, t)$

$$
w_{i m n j}(t) \equiv 2 v_{i m n j}(t)-v_{i m j n}(t)
$$

Initial correlations for 2nd Born

- Obtain equilibrium density matrix $\rho^{\text {eq }}$
- Calculate $h_{\mathrm{HF}}^{\mathrm{eq}}=h_{\mathrm{HF}}\left[\rho^{\mathrm{eq}}\right]$.
- Diagonalize $h_{\mathrm{HF}}^{\mathrm{eq}}$ to obtain eigenvalues ϵ_{i}

$$
\tilde{\mathcal{I}}_{i k}^{\mathrm{ic}}(t)=i \sum_{n p r} \frac{\tilde{v}_{i r p n}(t) \tilde{w}_{n p r k}}{\epsilon_{r}+\epsilon_{k}-\epsilon_{n}-\epsilon_{p}}
$$

The tensor \tilde{w} (Calculated once!) is

$$
\tilde{w} \equiv \sum w\left(\bar{\rho}^{\mathrm{eq}} \bar{\rho}^{\mathrm{eq}} \rho^{\mathrm{eq}} \rho^{\mathrm{eq}}-\rho^{\mathrm{eq}} \rho^{\mathrm{eq}} \bar{\rho}^{\mathrm{eq}} \bar{\rho}^{\mathrm{eq}}\right) .
$$

All time-dependence isolated to tensor $\tilde{v}(t)$

$$
\tilde{v}(t) \equiv \sum v(t) \mathcal{G}^{R}(t, 0) \mathcal{G}^{R}(t, 0) \mathcal{G}^{A}(0, t) .
$$

Explicitly: $\mathcal{I}^{\text {ic }}=\mathcal{I}^{\text {ic }}[\rho]$. No time integration! Scales like (basis size) ${ }^{5}$, just like original 2nd Born approximation!

How to obtain initial $\rho^{e q}$?

The adiabatic switching technique\square Works well, speeds up calculations compared to usual GKBA
\square Not always possible (finite temperature, phase transitions etc.)
Use equation of motion for ρ at $\mathrm{t}=0$
$-i\left[h_{\mathrm{HF}}^{\mathrm{eq}}, \rho^{\mathrm{eq}}\right]=\mathcal{I}^{\mathrm{ic}}(0)+$ H.c..
\square Supplement with reasonable occupations.

$$
\rho_{n n}^{\mathrm{eq},(i+1)}=f_{n}
$$

For example, from Matsubara calculation. Can be solved iteratively.Other methods of obtaining ρ,
see Hopjan, M. \& Verdozzi, C. Eur. Phys. J. Spec. Top. (2019).

Flowchart of GKBA calculation with adiabatic switch-on

Flowchart of GKBA calculation with initial correlations

Initial correlations developed in the CHEERS code
E. Perfetto \& G. Stefanucci, J. Phys.: Condens. Matter (2018)

Specific goals

\checkmark Obtain expression for initial correlations independent on adiabatic switching
\checkmark Expressions valid without assuming losses, or homogenous systems
\checkmark Basis-independent expressions
\checkmark Separate the time propagation from the obtaining of the initial state
\checkmark Efficient implementation in existing GKBA codes

LUMO HOMO UDA

Initial correlations without $\overline{\text { nown }} \overline{\text { external fields }}$

Procedure: Generate $\rho_{e q}$ with adiabatic switching with time $T_{i c}$. Then restart calculation from $t>0$ with $I^{i c}\left[\rho, \rho_{e q}\right]$.

- Neglecting $I^{i c}$ introduces large error
- Procedure is stable, even if $\rho_{e q}$ not perfectly generated
- Procedure numerically efficient: $I^{i c}$ and $I^{i c}=0$ has same cost

Short time behavior

Long time behavior

Density at LUMO without external fields

Initial correlations with external fields

Density at LUMO
current between LUMOAcceptor
real part of density matrix between HOMO-LUMO

Long time behavior

- Also off-diagonal parts of density matrix reproduced
- Initial correlations important at long times. Opposite behavior as found in homogeneous systems, where one can expect a decay in the initial correlations

Conclusions

\checkmark Obtain expression for initial correlations independent on adiabatic switching
\checkmark Expressions valid without assuming losses, or homogenous systems
\checkmark Basis-independent expressions
\checkmark Separate the time propagation from the obtaining of the initial state
\checkmark Efficient implementation in existing GKBA codes
D. Karlsson, R. van Leeuwen, E. Perfetto, G. Stefanucci,

The generalized Kadanoff-Baym ansatz with initial correlations. PRB (2018)

