Diagrammatic Expansion for Positive Spectral Functions in the Steady-State Limit

M. J. Hyrkäs, D. Karlsson, and R. van Leeuwen

Department of Physics, Nanoscience Center P.O.Box 35 FI-40014 University of Jyväskylä, Finland markku.hyrkas@jyu.fi

Abstract

Recently, a method was presented [1] for constructing self-energies within many-body perturbation theory that are guaranteed to produce a positive spectral function for equilibrium systems, by representing the self-energy as a product of half-diagrams on the forward and backward branches of the Keldysh contour. We derive an alternative half-diagram representation that is based on products of retarded diagrams. Our approach extends the method to systems out of equilibrium. When a steady-state limit exists, we show that our approach yields a positive definite spectral function in the frequency domain.

1. The Problem

- Some approximations for the self-energy can lead to negative valued spectral functions. -This prevents the probability interpretation of the spectral function, and can lead to instability in self-consistent calculations.
- This issue arises for example for:

2. Self-Energy in Terms of Half-Diagrams

- In Ref. [1] it was shown that in zero temperature the spectral function will be positive semi-definite (PSD) if the self-energy can be represented as a sum of squares of halfdiagrams.
- For example

(2)
- This splitting is obtained by placing a complete basis set at the end-point of the contour at $t=\infty$:

(3)
- The half-diagrams are then (anti)-time ordered.
- This requires the assumption that the initial state $\left|\Phi_{0}\right\rangle$ is connected to the state obtained in the distant future:

$$
\mathcal{U}(\infty,-\infty)\left|\Phi_{0}\right\rangle=e^{i \alpha}\left|\Phi_{0}\right\rangle .
$$

3. Generalization to Steady-State

- In Ref. [2] we show that the same proof can be performed without the assumption in Eq.(4), by placing the basis set at $t=-\infty$:

- The PSD nature of the spectral function can now be shown in the steady-state limit.
- In this case the half-diagrams are no longer time-ordered, but retarded. For example

where the circling of vertices denotes a retarded piece, the other vertices being retarded with respect to the vertex marked with a double circle.
- In a general half-diagram all internal vertices are retarded with respect to vertex 1 (or 2). This requires defining a general retarded diagram [2].

4. Example: Second Born Approximation

The $2 B$ approximation is PSD, since

5. Example: $g W$ Approximation

The $g W$ approximation with the RPA polarization funtion $P(1,2)=g(1,2) g(2,1)$ is PSD, since using

$$
\begin{equation*}
W^{\lessgtr}(1,2)=\int d 3 d 4 W^{R}(1,3) P^{\lessgtr}(3,4) W^{A}(4,2) \tag{8}
\end{equation*}
$$

we can write the xc-self-energy as

(9)

6. Generalized Retarded Compositions

- In order to define general retarded compositions, we will first define general contour ordered components
- A contour function that is representable as a diagram can be replaced by a real-time function whenever the order along the contour γ is fixed. For example

$$
\begin{equation*}
\bar{\Sigma}_{x c}\left(z_{a}, z_{b}, z_{c}, z_{d}\right)=\bar{\Sigma}_{x c}^{1234}\left(t_{a}, t_{b}, t_{c}, t_{d}\right) \text { when } z_{a}>z_{b}>z_{c}>z_{d} . \tag{10}
\end{equation*}
$$

- For a two-point function these components are equal to the greater and lesser components:

$$
\begin{equation*}
G^{12}\left(z_{a}, z_{b}\right)=G^{>}\left(z_{a}, z_{b}\right), \quad G^{21}\left(z_{a}, z_{b}\right)=G^{<}\left(z_{a}, z_{b}\right) \tag{11}
\end{equation*}
$$

This set of functions for each permutation of the arguments encodes all the information in the original contour function.

6.1 One Vertex

Take for example a half-diagram with a single internal vertex (with diagrammatic representation on the right):

$$
D\left(z_{a}\right)=\int_{\gamma} d z_{b} D\left(z_{a}, z_{b}\right) \quad \text { (2) }=\text { (a) (1) }
$$

(12)

If one defines a retarded composition

$$
\begin{equation*}
D^{R}\left(t_{a}, t_{b}\right)=\theta\left(t_{a}-t_{b}\right)\left(D^{>}\left(t_{a}, t_{b}\right)-D^{<}\left(t_{a}, t_{b}\right)\right)=\theta_{a b} O^{[1,2]}\left(t_{a}, t_{b}\right), \tag{13}
\end{equation*}
$$

it follows that

$$
D^{1}\left(t_{a}\right)=\int_{t_{0}}^{\infty} d t_{b} D^{R}\left(t_{a}, t_{b}\right) \quad \text {-(a- = (C) (B) }
$$

(14)

6.2 Two Vertices

A half-diagram with two internal vertices

$$
D\left(z_{a}\right)=\int_{\gamma} d z_{b} d z_{c} D\left(z_{a}, z_{b}, z_{c}\right) \quad \text { (a) }=\text { (a) (b) © }
$$

(15)
motivates the definition of a retarded composition for which

$$
D^{1}\left(t_{a}\right)=\int_{t_{0}}^{\infty} d t_{b} d t_{c} D^{R(1,23)}\left(t_{a}, t_{b}, t_{c}\right) \quad-\text { (a) }=\text { (a) (b) () }
$$

16)

This is achieved for example by

$$
\begin{equation*}
D^{R(1,23)}=\theta_{a b c} D^{[1,2], 3]}+\theta_{a c b} O^{[[1,3], 2]} . \tag{17}
\end{equation*}
$$

6.3 N Vertices

For a general half-diagram with N internal vertices

$$
D\left(z_{n_{1}}\right)=\int_{\gamma} d z_{n_{2}} d z_{n_{N}} D\left(z_{n_{1}}, \ldots, z_{n_{N}}\right) \quad \text { (1) }=\text { (1) } \begin{gather*}
\text { (2) } \tag{18}\\
\vdots \\
\text { (1) }
\end{gather*}
$$

one then has

(19)
with the retarded composition

$$
D^{R(1,2 \cdots n)}=\sum_{P \in S_{n-1}} \theta_{1 P(2) \cdots P(n)} D^{[1, P(2), \ldots, P(n)]}
$$

References

[1] G. Stefanucci, Y. Pavlyukh, A.M. Uimonen, and R. van Leeuwen, Phys. Rev. B 90, 115134 (2014).
[2] M. J. Hyrkäs, D. Karlsson, and R. van Leeuwen Contour calculus for many-particle functions, to be published

